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Abstract— This work develops a novel distributed algorithm 

for task assignment (TA), coordination and communication of 

multiple UAVs engaging multiple targets and conceives an ad-hoc 

routing algorithm for synchronization of target lists utilizing a 

distributed computing topology. Assuming limited communication 

bandwidth and range, coordination of UAV motion is achieved by 

implementing a simple behavioral flocking algorithm utilizing a 

tree topology for distributed flight coordination. Distributed TA 

is implemented by a relaxation process, wherein each node 

computes a temporary TA based on the union of the TAs of its 

neighbors in the tree. The computation of the temporary TAs at 

each node is based on weighted matching in the UAV-target 

distances graph. A randomized sampling mechanism is used to 

propagate TAs among different parts of the tree. Thus, changes in 

the location of the UAVs and targets do not pass through the root 

of the tree. Simulation experiments show that the combination of 

the flocking and the TA algorithms yields the best performance. 

 
Index Terms—Distributed Control, Distributed Algorithms, 

Mobile Communication. 

 

I. INTRODUCTION 

he problem of design, development and control of multi-

agent systems has been studied in recent years for many 

applications. In particular, the use of systems consisting of 

multiple autonomous robots or unmanned aerial vehicles 

(UAVs) has been proposed in order to meet the requirements 

of complex missions [1].  Control, communication and 

decision support systems for UAVs constitute rapidly evolving 

research and development fields, as indicated by the 

Department of Defense UAV Roadmap 2002-2027 [2]. The 

use of groups of cooperating UAVs in order to perform 

various missions is currently studied throughout the world and 

is considered a main research goal by the United States Air 

Force Research Laboratory (AFRL) [3].  

Assigning multiple UAVs to perform tasks cooperatively is 

a challenge that requires the development of specialized 

algorithms [4]-[7]. These algorithms may be classified into 

two main types: optimal and heuristic. While optimal 

algorithms yield better results in terms of task assignment (TA) 

[9], they are usually more sensitive to system uncertainties, 

enemy behavior, and environment changes. Heuristic 

algorithms [10], on the other hand, are usually sub-optimal but 

more robust. An issue strongly related to cooperative UAV 

motion is flocking (also referred to as formation flying), which 

has been extensively studied in the last two decades [11], 

following the seminal work of Reynolds [8].   

In this work, we are concerned with solving the following 

cooperative decision and control problem: A given number of 

UAVs and targets are dispersed on a given theater. Maximize 

the ratio between the number of intercepted targets and the 

number of launched munitions given a fixed number of flock 

payloads 

We use the Metrical Routing Algorithm (MRA) [12] for ad-

hoc communication. This algorithm maintains connectivity by 

dynamically connecting the UAVs using a minimal set of 

rooted spanning trees (RSTs).  The proposed algorithms for 

coordinating the UAVs uses the RST structure as a black-box 

building block. Thus, the dynamic communication details are 

masked out by the dynamics of the underlying set of RSTs. We 

mainly focus on coordination and decision support rather than 

on details related to the ad-hoc communication.   

The TA algorithm is implemented by a relaxation processes 

over the RST nodes. Each node computes a flow of updated 

TA plans by collecting TA plans from its neighbors in the tree 

and merging them. This relaxation process achieves two goals 

simultaneously: 

 Distribution: Independent generation of TA plans at each 

node, such that each plan is updated to include only local 

changes.   

 Robustness: Local changes are propagated to other nodes 

through a common root only.   

We use randomized sampling to overcome the relatively 

slower rate at which global information is propagated. This 

sampling is done by sending locally updated TAs to remote 

nodes selected at random. This algorithm is an enhanced 

version of a basic version that appeared in [13]. 

Thus, while most researchers assume a given system, 

propose a new control algorithm, and examine the algorithm's 

performance compared to other known algorithms, we take a 

novel approach and develop a distributed UAV decision and 

control system comprising all three layers: flocking, 

communication and task assignment. We evaluate the system’s 

performance by examining efficiency, measured by the ratio 

between the number of killed targets and the number of 

munitions launched by the group of UAVs at a given time.  For 

our simulation experiments, we assume that every UAV is 

equipped with two types of sensors: A Ground Moving Target 

Indicator (GMTI) that detects vehicle movement and an 

Electro Optical (EO) sensor used to track the target and guide 

the missiles. The detection radius of the GMTI is assumed to 

be larger than the detection radius of the EO sensor. We show 

that the proposed algorithms considerably increase the flock 

efficiency. 
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II. THE FLOCKING LAYER: HEURISTIC RELATIVE UAV 

CONTROL 

This section discusses the heuristic control algorithm for UAV 

coordination based on Reynolds’ behavioral flocking 

algorithm [8], which may be summarized as follows: Let 

kU G  denote some UAV constituting a node in the graph 

G . 
kU  calculates its desired velocity as follows: 
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where w is a constant scalar weight function, k is the UAV 

index and i is the algorithm law index, defined by the 

following flocking rules: 

 

1:i  Cohesion; commands the UAV to converge onto the 

center of the flock, computed by each UAV from the data 

communicated to it by the other UAVs. We denote the desired 

cohesion velocity for 
kU  by 

1

k
v , and by k

x  the position 

vector of 
kU . The cohesion velocity command may be written 

as 
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where   denotes the Euclidian vector norm, 
refR  is a 

reference distance, usually related to the maximum payload 

detection range, representing the effective area of the UAV 

payload, and  
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where 
1

jkr  is the cohesion rule weight for 
kU  relative to 

jU , 

given by 
1 1= ( , , ).jk k jr r t x x  In Eq. (3) and the subsequent 

equations, n  denotes the number of nodes of some subtree 

'G G , and not necessarily the total number of UAVs, to be 

denoted by N. 

Although 
1

jkr  may be time dependant, it is more likely that 

it would be directly dependant upon the relative position, 

increasing as the relative distance between the UAVs 

decreases, or remain constant. 

  

2 :i  Alignment; matches the UAV's velocity vector to the 

mean velocity vector of the group. Alignment therefore 

attempts to steer the UAVs to fly in parallel to each other. We 

denote the desired alignment velocity for 
kU  by 

2

k
v , and let 

2

jkr  be the alignment weight for 
kU  relative to 

jU , so that  
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Similarly to 
1r , 

2 2= ( , , )jk k jr r t x x  may be constant, time-

dependant, or a function of the relative distance between 
kU  

and 
jU . 

 

3:i  Collision avoidance; restricts the UAV from colliding 

with its nearest neighbors. To that end, 
kU  calculates its 

desired collision avoidance velocity, 
3

k
v , relative to the other 

UAVs according to the formula  
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where 
3

jkr  is the collision avoidance rule weight of 
kU  

avoiding collision with 
jU , and j

x  and k
x  are the position 

vectors of 
jU  and 

kU , respectively. The weight function 
3

jkr  

is likely to be dependant upon the relative distance between 

kU  and 
jU , equaling 1 for the closest neighbor to UAV k and 

0 for all other UAVs. 

The desired velocity (1) is translated into an acceleration 

command using the following kinematic equation: 
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where 3k v  and 3k

d v  are the current and desired 

velocity of 
kU , respectively, and k

maxn  is the maximal load 

factor of 
kU . The term k k

dv v  in Eq. (6) yields a vector 

perpendicular to the plane defined by the velocity vectors k
v  

and k

dv . This perpendicular vector is then vector multiplied 

again by k
v  to define the direction, perpendicular to k

v , in 

which the UAV will accelerate in order to reach the desired 

velocity k

dv . The quotient defines a unit vector in the desired 

maneuver direction, and then multiplied by the UAV maximal 

load factor to give the maneuver magnitude. This acceleration 

is integrated into velocity and position using the kinematic 

model: 
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Fig. 1 depicts a number of flocking scenario, implementing 

different weights on the cohesion, alignment and collision 

avoidance rules. This figure shows that the movement of the 

UAVs in the field can be modified by a proper selection of the 

flocking weights.  
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(a) 

1 2 30, 0.2, 0.8w w w    

 
(c) 

1 2 30.01, 0.99, 0w w w    

 
(b) 

1 2 30.01, 0.01, 0.98w w w    

 
(d) 

1 2 30.1, 0.2, 0.7w w w    

 

Fig. 1.  5-UAV flocking (starting points marked with an 'o'): (a) no cohesion 

creates straight and parallel paths to avoid collisions; (b) a combination of 

cohesion and alignment with much favored collision avoidance creates curved 

paths; (c) no collision avoidance creates a possible collision point; (d) 

increasing the cohesion and alignment weights increases the turn radii.  

 

The implementation of Reynolds’ algorithm in this work is 

carried out using a new approach: The flocking algorithm 

controls the velocity and heading of the UAVs. However, each 

UAV communicates with its closest neighbors only and is 

unable to get a global view of the heading and velocity of the 

entire flock. The control information including the flocking 

data propagates from node to node using the tree management 

protocol. 

III. THE COMMUNICATION LAYER: METRICAL ROUTING 

ALGORITHM  

In this section, we describe the metrical routing algorithm 

(MRA) [12], used as an ad-hoc communication protocol 

between the UAVs for communicating target list and flocking 

information.  

The MRA protocol presented herein is a hybrid ad-hoc 

protocol in the sense that some traffic control is used to 

maintain the mapping of the communicating nodes. The small 

overhead of the MRA protocol used to maintain the mapping 

is a worthy investment, as the MRA is capable of handling 

successfully a demanding traffic load under a high node 

density and fast node movement. The MRA organizes the 

nodes in rooted trees in order to find short session paths 

between nodes on the tree. The algorithm attempts to minimize 

the number of trees by fusing separate adjacent trees into a 

single tree. As long as any node in one tree is not in the 

transmission range of any node in the other trees, the trees will 

function autonomously. As soon as a radio connection is 

created between two nodes, the trees will be fused into a single 

tree. 

The MRA algorithm organizes the nodes in the field in 

rooted trees. Only nodes that belong to the same tree can 

create sessions among themselves. To ensure maximal 

connectivity, all nodes will try to organize themselves in a 

single tree. Every node in the field has a unique node-ID 

(similar to a phone number or an IP address) and virtual 

coordinates that may change depending on the changes in the 

tree structure. Every tree is identified by a “tree name” which 

is the ID of the root node. Nodes periodically send beacons, 

termed hello messages. Every node that receives a beacon 

checks whether the node that sent the beacon belongs to a 

different tree. If the nodes belong to different trees, they 

initiate a fusion process that fuses the separate trees into a 

single tree.  

Initially, every node forms a separate tree of size 1. Every 

node in the tree can autonomously migrate to a neighboring 

tree regardless of the node position in the tree. The migrating 

node gets new coordinates in its new tree according to the 

node’s new position. Naturally, when a node migrates from 

one tree to a new tree, it may carry along its neighboring nodes 

(since it belongs now to a bigger tree). In the macro view, the 
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migration of the single nodes creates a fusion of smaller trees 

into larger ones.   

The fusion process of two trees is parallel, that is, at any 

given time step, multiple nodes of the smaller tree join the 

larger tree. The implementation of the flocking and TA 

algorithms is based on the tree structure. Every tree runs these 

algorithms autonomously, as it cannot necessarily 

communicate with other trees. Existence of such 

communication will initiate a merge process that will 

ultimately result in a single tree. 

IV. THE TASK ASSIGNMENT LAYER: TARGET LIST 

MANAGEMENT   

The TA layer relies on the arrangement of the UAVs in 

trees and on the inter-communication capabilities using ad-hoc 

routing. Every UAV is autonomous, performing autonomous 

decisions and behaving according to the changes in the theater. 

However, when a UAV becomes a node in a tree created by 

the MRA, it upgrades its behavior and acts as a member of a 

group. 

When a UAV operates as an individual – that is, when 

flocking and TA are disabled -  each UAV randomly selects a 

flying heading and continues to fly in this direction until one of 

the following happens:  

(a) The sensors detect a potential object to intercept. In this 

case, the UAV will select an optimal route in order to 

intercept the target. The process of calculating the route is 

performed under the UAV flight and maneuvering 

limitations. 

(b) The UAV reaches the border of the theater. In this case, the 

UAV selects one of the following:  

1. Return back to the theater using the same heading angle 

( ). 

2. Return with a random heading angle. 

3. Return to the field using the heading angle of   .  

(c) The UAV randomly changes its flying direction with a 

probability of  10
-5

 per simulation cycle.  

In this section we consider the problem of computing a 

targeting plan for a set of moving agents 
1 2{ , , , }NG U U U  

(UAVs in our case) attacking moving targets 

1 2{ , , , }mA T T T  (vehicles in our scenario). We focus on a 

distributed solution over a special setting where the 

communication among 
1 2, , , NU U U  is carried out by an ad-

hoc network, as described in the previous section. Using ad-

hoc communication yields a complex and challenging setting 

wherein the following factors should be considered:     

 Ad-hoc communication implies that communication 

links among 
1 2, , , NU U U  are constantly changing. 

Thus, there is no guarantee that a given subset of G 

that was previously connected will remain connected. 

 At any stage new information regarding (a) new 

targets, (b) changes in the location of known targets 

and (c) new 
iU 's that are closer to a given target can 

pop-up. 

 It is desired not to fix a targeting plan (i.e., assign 

targets to each 
iU ) in advance, but rather adopt the 

reactive setting wherein at any time step only a 

portion of the targets are assigned to some subset 

' .G G  

 Centralized algorithms where all the data (location of 

1 2, , , NU U U  and 
1 2, , , mT T T ) is collected and then 

processed may fail to obtain good solutions due to 

disrupted communication and long communication 

delays. 

We hereby suggest an enhanced of the TA algorithm 

described in [13]. In this algorithm, target assignments are 

communicated among the UAVs using the MRA protocol 

described above. Unlike other ad-hoc routing algorithms, the 

MRA attempts to connect 
1 2{ , , , }NG U U U  (or a subtree 

thereof) by a minimal set of rooted trees that preserves 

geographical distances, namely distances on the rooted trees 

are usually proportional to the distances of 
1 2, , , NU U U  in 

the given engagement theater.  

More formally, let ( )G t  be the graph at time t wherein each 

two nodes ,i jU U  that can communicate have an edge in ( )G t . 

The MRA algorithm attempts to cover ( )G t  by a minimal set 

of spanning trees. These rooted trees can be naturally used for 

both distributed computing (of, e.g., the flocking layer) as well 

as for communication, in addition to propagation and 

computation of the TA layer. The proposed TA algorithm for 

iU G  using the MRA protocol can be thus summarized as 

follows: 

1. Each node 
iU  in a tree (or a subtree) locates all the 

detectable targets, identifies them and computes its 

distance to each target. The target ID is the target location. 

Note that computing a unique target ID is not always 

straightforward, since it may require fusion of the target 

location taken by several UAVs in adjacent time steps and 

locations. 

2. At each time step ( )t i , a node v constructs a weighted 

bipartite graph [ ( )]vB t i  representing the distances 

between each 
iU  and 

jT  related to the subtree rooted at v. 

There are three events that lead to the creation of a new 

bipartite graph [ ( 1)]vB t i  :  

 A new [ ( 1)]uB t i    is received from one of v's 

children. 

 A new [ ( 1)]FvB t i   is received from v's father or 

by a remote node through the random sampling 

mechanism.  

 There is a change in the target list L of v, i.e., v 

detects a new target or an old target disappears or 

destroyed. 

In each of these events, a new [ ( 1)]vB t i   is 

computed by merging [ ( 1)]uB t i   or [ ( 1)]FvB t i   or 

L into [ ( 1)]vB t i  . 

3. The node v computes a minimum weighted matching 

[ ( 1)]vM t i   of [ ( 1)]vB t i   obtaining an attack plan that 
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minimizes the sum of distances of the UAVs in the subtree 

of v to their targets,  

 

 *

, [ ( 1)]v

ij

i j B t i

d d
 

   (8) 

 

4. [ ( 1)]vB t i   is sent to the father 
vF  of v and [ ( 1)]vM t i   is 

sent to all the children of v. 

5. When a node v receives an attack plan [ ( 1)]FvM t i   from 

its father, it checks to see if it is assigned a new target; if 

so, it "leaves" its current target and starts to engage the 

recommended target.  

6. The attack plan [ ( 1)]FvM t i   is sent to all the children of 

the current node. 

Note that in case a target is destroyed or disappears, it will 

be removed from each ( )vB t , since these are propagated only 

up the MRA trees. 

The implementation of the target selection algorithm uses a 

single data structure to transfer the bipartite graph ( )vB t  and 

the attack graph [ ( 1)]vM t i  . This data structure is the Target 

List (TL).  A simplified TL model is depicted by Fig. 2. This 

model ignores the parallelism in the TL flow between the 

UAVs. It explains the decision-making process and the 

decision overruling performed by higher levels of UAVs in the 

tree with broader views.   

Fig. 2A presents the initial phase where 
4U  and 

5U  have 

detected target 
1T , 

6U  and 
7U  have detected 

2T , and 
8U  

detected 
3T . Every UAV that has one or more targets will 

autonomously select a target from the possible targets in its TL 

and will commence a pursuit. The current state depicted in Fig. 

2A is that 
4U  and 

5U  are in pursuit after 
1T , 

6U  and 
7U  

prosecute 
2T  and 

8U  will pursuit 
3T . The pursuit process of 

the UAVs is independent of other UAV activities. Note that 

this is the initial phase, where the targets were detected by the 

GMTI detector but are not yet within the range of the UAV 

missiles launch distance (i.e. within the FOV of the EO 

payload). Every UAV stores a TL comprising all targets 

known to the UAV and indications on the target state. Every 

UAV then sends its TL to its father and children. 
4U , 

5U  and 

6U , constituting leaves in the tree, send their TLs toward node 

1, which is the subtree father. The decision taken by 
1U  

arrives to 
4U , which is also the UAV attacking 

1T . 
4U  

continues its attack while 
5U  receives the same TL from its 

father, and finds out that it should abort its attack on 
1T . 

5U  

will look for an alternative target without an owner in the TL 

that is within its GMTI range, or will search for a new target 

that might emerge.  

Fig. 2B presents a situation in which 
1U  had analyzed the 

TLs and decided that sub-tree D will be responsible to attack 

1T , sub-tree E will not attack 
1T  and sub-tree F will attack 

2T . 

The decisions of 
1U  are sent to its father node 0 and its 

children. A similar process takes place in the other parts of the 

tree.  

In Fig. 2C, the root distributes the results of its decisions to 

its children. The decisions are embedded in its TL. The 

decision of 
0U  is that subtree C will assume the responsibility 

to attack 
2T , while subtree A will abandon its attack. These 

decisions will be distributed by every subtree towards its 

children until they reach the leaves. In the meantime, 
6U  and 

7U  continue their pursuit after 
2T .  

Fig. 2D presents a situation where the root decisions arrived 

to the attacking UAVs, and 
6U  stopped its attack on 

2T  while 

7U  continues its attack. The upstream and downstream flow of 

TLs is not affected by changes in the tree structure or by 

appearance of new targets. 

 

Fig. 2.   Target List flow 

V. SIMULATION AND VISUALIZATION  

Fig. 3 presents a snapshot of the theater as created by the 

simulator. The UAVs are identified by their position in the 

tree, where R is the root, R.1 is one of the children of the root 

and R.1.1 is a child of R.1. Fig. 3A presents the detection 

footprint of R.1.1 while Fig. 3B presents the detection 

footprint of R.1.  

R.1.1 in Fig. 3A detected two potential targets. One of the 

targets, marked by a cross, was selected as the target to be 

attacked and this is the 1
st
 priority target for this UAV. R.1 in 

Fig. 3B also detected two targets, where one of the targets is 

observed by both UAVs. The target marked with a cross was 
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selected as the target to be attacked. Note that this UAV is 

attacking the farthest target and not the closest one. This 

decision was taken after analyzing the velocities and headings 

of the entities participating in this pursuit or by a decision of 

the upper layer in the tree (node R). 

 

 

Fig. 3.  Theater view during engagement.  

VI. EXPERIMENTAL RESULTS 

The simulation experiments are aimed at evaluating the 

contribution of the flocking and TA algorithms to the 

performance of the UAVs using MRA-based ad-hoc 

communication.  The main experiments comprise the 

following benchmarks:  

 

1. Reference Monte-Carlo simulations performed without 

employing the flocking and TA algorithms; 

2. Monte-Carlo simulations used to evaluate the contribution 

of the flocking algorithm; and  

3. Combined Monte-Carlo tests where both flocking and TA 

algorithms are employed simultaneously.  

Each simulation run in Cases 1-3 has been performed 

assuming that the missile hit probability is unity. All 

simulations were performed using a time interval of 
ft  100 

sec. Additional simulation parameters are listed in Table 1. 

 

TABLE 1: SIMULATION PARAMETERS 

Theater dimensions 14 Km x 14 Km 

UAV initial speed 
100 Km/h – 120 Km/h (uniform 

distribution) 

UAV radio transmission 

range 
1.7 Km 

Target speed 50 Km/h - 80Km/h (uniform distribution) 

No. of targets  16 

No. of UAVs  8-16 

Missiles 

Fixed value of 16. In case of 8 UAVs, every 

UAV carries 2 missiles. In case of 16 

UAVs, every UAV carries 1 missile. For all 

other cases, every UAV carries randomly 1 

or 2 missiles. 

TL synchronization rate 30 Hz 

Maximal UAV load factor 2g 

The main performance evaluation measure is the average 

number of hits per UAV, calculated as the ensemble average 

over 50 Monte-Carlo runs.  

Fig.  4 depicts the results of the Monte-Carlo simulations. In 

this figure, the x-axis is the UAV group size and the y-axis is 

the average number of hits per UAV. Each point on this graph 

represents an ensemble average of 50 Monte-Carlo runs. There 

are three curves shown in this figure, corresponding to Cases 

1-3.  
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Fig. 4.   Monte-Carlo simulation results for a 
ft  100 sec. 

There are two important observations. First, it is seen that 

the flocking algorithm improves the average number of hits by 

up to 12%. Combining the TA and flocking algorithms 

improves the average number of hits per UAV by up to 14%. 

Second, increasing the number of UAVs reduces the average 

number of hits per UAV, as expected. Roughly, the relation is 

linear. This implies that when more UAVs are used, each 

platform can carry less munitions for intercepting the same 

amount if targets.  

Fig. 5 shows the standard deviations of the average number 

of hits for the case of 14 UAVs. It is seen that the standard 

deviation remains practically invariant to the UAV cooperation 

method.  
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Fig.  5.  Standard deviation intervals for the case of 14 UAVs 
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VII. CONCLUSIONS 

We developed a distributed algorithm for task assignment, 

coordination and communication of multiple UAVs engaging 

multiple targets in an arbitrary theater. The algorithm used a 

relaxation method for computing both locally- and globally- 

updated task assignment plans. The relaxation is made over a 

tree structure generated by the underlying ad-hoc 

communication layer. Random sampling is used to enhance the 

propagation of changes between remote nodes in the theater.  

Our simulation experiments raise a number of important 

conclusions. First, we conclude that the combination of 

flocking and task assignment gives the best performance, 

which is improved relative to the case with no flocking and no 

task assignment. An improvement of the average number of 

hits was observed for UAVs that were capable of both target 

list exchange and velocity coordination. Second, increasing the 

number of UAVs enables to reduce the amount of munitions 

per platform.  
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